Boronic acid based imprinted electrochemical sensor for rutin recognition and detection.
نویسندگان
چکیده
Multi-walled carbon nanotubes (MWNTs) and boronic acid based molecular imprinting polymer (MIP) were successively modified on a glassy carbon electrode surface to fabricate a novel electrochemical sensor for rutin recognition and detection. 3-Aminophenylboronic acid (APBA) was chosen as a monomer for the electropolymerization of MIP film in the presence of rutin. In addition to the imprinted cavities in MIP film to complement the template molecule in shape and functional groups, the high affinity between the boronic acid group of APBA and vicinal diols of rutin also enhanced the selectivity of the sensor, which made the sensor display a good selectivity to rutin. Moreover, the modified MWNTs improved the sensitivity of the sensor for rutin detection. The mole ratios of rutin and APBA, electropolymerized scan cycles and rates, and pH value of the detection solution were optimized. Under optimal conditions, the sensor was used to detect rutin in a linear range from 4.0 × 10-7 to 1.0 × 10-5 mol L-1 with a detection limit of 1.1 × 10-7 mol L-1. The sensor has also been applied to assay rutin in tablets with satisfactory results.
منابع مشابه
Fabrication of a Selective and Sensitive Electrochemical Sensor Modified with Magnetic Molecularly Imprinted Polymer for Amoxicillin
A modified electrochemical sensor for the determination of amoxicillin (AMX) was reported in this paper. The magnetic molecularly imprinted polymer (MMIP) were suspended in AMX solution and then collected on the surface of a magnetic carbon paste electrode (CPE) via a permanent magnet, situated within the carbon paste electrode and then the voltammetry signals were recorded. It was confirmed th...
متن کاملAn Electrochemical Sensor Based on Novel Ion Imprinted Polymeric Nanoparticles for Selective Detection of Lead Ions
In this study, the novel surface ion-imprinted polymer (IIP) particles were prepared and applied as a electrode modifier in stripping voltammetric detection of lead(II) ion. A carbon paste electrode (CPE) modified with IIP nanoparticles and multi-walled carbon nanotubes (MWCNTs) was used for accumulation of toxic lead ions. Various factors that govern on electrochemical signals including carbon...
متن کاملFabrication of an Electrochemical Sensor Based on a New Nano-ion Imprinted Polymer for Highly Selective and Sensitive Determination of Molybdate
In this work a new chemically modified carbon paste electrode was constructed for accurate, simple, sensitive and selective determination of molybdenum (VI) ions. The results of modified electrode by an ion imprinted polymer were compared with those obtained with carbon paste electrode. The results showed the stripping peak currents had a dramatic increase at the modified electrode. Under the o...
متن کاملAn Enzyme Free Potentiometric Detection of Reducing Sugars Based on a Poly(3-hydroxyphenylboronic acid-co-phenol) Molecularly Imprinted Polymer Modified Electrode
An enzyme free potentiometric sensor for reducing sugars (glucose and fructose) based on molecularly imprinted polymer (MIP) modified on glassy carbon electrode was systematically investigated. It was expected to work like a solid ion selective electrode (ISE) where the specific carrier are the imprinted sites. The polymer for the selective recognition of glucose and fructose were synthesized b...
متن کاملSelective and enantioselective analysis of mono- and disaccharides using surface plasmon resonance spectroscopy and imprinted boronic acid-functionalized Au nanoparticle composites.
A method was developed for the synthesis of molecularly imprinted Au nanoparticle (NP) composites on electrodes by electrochemical means. The resulting composites include specific recognition sites for mono- or disaccharides. The method is based on the formation of a boronate complex between the respective saccharide and the boronic acid ligands associated with the Au NPs. The electropolymeriza...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 141 20 شماره
صفحات -
تاریخ انتشار 2016